
The Archimedes 2

In Proc. 1996 IEEE Intl. Conf. on Robotics and Automation, pp. 3361{8

Mechanical Assembly Planning

System �

Stephen G. Kaufman Randall H. Wilson Rondall E. Jones Terri L. Calton

Arlo L. Ames

Intelligent Systems and Robotics Center

Sandia National Laboratories

Albuquerque, NM 87185-0951

Abstract

We describe the implementation and performance

of Archimedes 2, an integrated mechanical assembly

planning system. Archimedes 2 includes two plan-

ners, two assembly sequence animation facilities, and

an associated robotic workcell. Both planners use fully

3 dimensional data. A rudimentary translator from

high level assembly plans to control code for the robotic

workcell has also been implemented. We can translate

data from a commercial CAD system into input data

for the system, which has allowed us to plan assembly

sequences for many industrial assemblies. Archimedes

2 has been used to plan sequences for assemblies con-

sisting of 5 to 109 parts. We have also successfully

taken a CAD model of an assembly, produced an op-

timized assembly sequence for it, and translated the

plan into robot code, which successfully assembles the

device speci�ed in the model.

1 Introduction

The mechanical assembly planning problem is that
of taking a model of a mechanical device, and com-
puting one or more assembly sequences that will as-
semble the device from its piece parts. It is actually a
wide class of problems, depending on the constraints
that the resulting sequence must satisfy. The mini-
mum constraint is that the sequence must be geomet-
rically valid | that is, none of the operations of join-
ing parts and subassemblies require interpenetration
of parts. Another constraint is that any tools that are

�This work was supported by Sandia National Laboratories

under DOE contract DE-AC04-94AL85000, and by the Lab-

oratory Directed Research and Development O�ce of Sandia

National Laboratories.

required to perform assembly operations must be able
to go through a su�cient range of motion to ful�ll
their function. We may also require that the available
assembly operations be limited to those that can be
performed by a given assembly apparatus. This makes
possible an automatic assessment of the assemblability
of a product on an existing assembly system.

Because of the importance of the mechanical assem-
bly planning problem, the last decade has witnessed
an explosion in computer-aided assembly planning re-
search (see, e.g., [2]). Signi�cant advances have been
made in both theory and practice, and a great number
of experimental systems have been built.

Successful solution of the problem would be of great
use to product and manufacturing system designers.
A system implementing such a solution would enable
design for assembly, by providing analysis of the as-
semblability of a design as expressed by a CAD model.
It would therefore have the potential to signi�cantly
reduce the costs of product realization. Output from
such a system could be of several forms; instructions
to a human assembler, an animation of the assembly
sequence, or an animation of an assembly system car-
rying out the assembly. The utility of such a system
would be even greater if the resulting plans could be
translated directly into control software for an assem-
bly apparatus, such as a robotic workcell.

This paper describes a system we have imple-
mented, called Archimedes 2, that is a �rst step to-
wards such an integrated mechanical assembly plan-
ning system (the system is a successor to the proto-
type Archimedes system developed at Sandia [13]). Its
two planners have computed sequences for assemblies
from both industry and government; one planner has
done so for an assembly of 109 parts. We have also
demonstrated a complete and automatic path from a

CADmodel of a mechanical assembly, to an optimized
assembly sequence, to an automatically programmed
robot that carries out the sequence. To our knowledge,
no other research program has demonstrated this com-
pleteness. Two assembly sequence animation facili-
ties have been developed, one for showing a sequence
as \
ying parts", the other for showing a simulated
workcell performing the sequence. These animations
are driven directly by the output of the assembly plan-
ners.

The rest of this paper, a substantially abbreviated
version of [6], is organized as follows. We �rst describe
the system, both its overall architecture and the im-
plementation of its components. Then we describe the
results of running it on various assemblies. Finally,
we describe our current and future work on the sys-
tem. Related work is referenced throughout the paper
where appropriate.

2 System Description

Archimedes 2 includes two assembly planners. One
considers part geometry and tool accessibility, and
�nds a single plan if one exists. The actual plan-
ning architecture is very simple, and its power derives
almost exclusively from the large suite of geometric
functions and queries we have developed. Its success
demonstrates the power of this suite of geometric func-
tions, and we therefore call this planner the \geometric
engine".

The second planner is built on top of the geometric
engine, using a standard search algorithm that simul-
taneously considers many assembly sequences. It also
considers the orientation of the current subassembly
and the grippers needed to acquire the parts, prefer-
ring sequences that minimize inversion operations and
gripper changes. Currently, it does not consider tool
accessibility.

Both of these planners require geometric models of
the complete assembly. Additional data about part
joinings (e.g., welds and press�ts) is also necessary.

Besides the two planners, the Archimedes 2 soft-
ware includes an animation facility (\Illustrator"), a
translator of high-level plans into robot control code,
and a library of robot control subroutines. The sys-
tem also includes an Adept 2 robot as the target of
this translation. Related to Archimedes 2, though not
part of the core system, is a \design module" that
provides CAD data. This module is based on the
Pro/ENGINEER CAD system. Because of space
limitations, we will not describe it in this paper.

Engine

Design Module

Translator Illustrator

Robot Workcell

State−Space
Planner

Pro/E to ACIS
Translator

Plans and
Simulations

User

Geometric

Figure 1: The architecture of Archimedes 2

The relationships between the components are il-
lustrated in �gure 1.

We will �rst describe the assumptions we made in
developing the software, and then the inputs and out-
puts to the Archimedes 2 system. Then, each system
component will be described in greater detail.

2.1 Background and Assumptions

Our planners produce two-handed, monotone as-
sembly sequences. The sequences do not need to be
linear: subassemblies can be identi�ed as part of the
input, or be computed.

Our software uses the ACIS solid modeling system
to represent the geometry and topology of parts and
assemblies. ACIS uses a boundary representation for
solids; it has a facetting capability, which we use in
an essential way. Each body is facetted as part of
model input; this facetted representation is used for
contact-�nding, collision detection, and animation.

Archimedes 2 encodes the following three major as-
sumptions:
� All parts are perfectly rigid.

� The available assembly operations are

mating, which puts a part in its correct relative
position (with respect to the other parts in

2

the assembly). This operation requires spec-
i�cation of the pair of parts or subassemblies
to be mated, and a trajectory for one of them
to follow.

joining, which attaches two parts once they are
in the correct relative position. These in-
clude welding, screwing, glueing, etc.

inverting a part or a subassembly.

� Mating trajectories are translations, rotations, or
a combination (as for driving a screw).

2.2 System Input

Input to the Archimedes planners is of two types:
1) solid models of parts (in their assembled con�g-
urations); and 2) additional information about how
parts are joined, recommended subassemblies, and
suggested assembly directions. These types of inputs
are gathered together into an assembly �le. An assem-
bly �le contains a list of �lenames describing parts or
subassemblies; associated with each is a 4�4 transfor-
mation matrix that speci�es the location of the part
or assembly in the world coordinate system. Files de-
scribing parts are ACIS-readable models. Files de-
scribing subassemblies have the same form as the top-
level assembly �le.

Each assembly or subassembly has an associated �le
describing non-geometric data. Such non-geometric
data is a standard feature of assembly planning sys-
tems. Bourjault's liaisons [1] and Ko and Lee's mat-

ing conditions [7] are early examples, while Homem
de Mello's relational model [3] is probably the most
comprehensive view. Work on CAD standards such
as PDES/STEP [4, 9] promises to standardize repre-
sentations for much of this information.

Speci�cally, the auxiliary �les declare:

� threaded contacts, press�ts, and snap�ts. The ge-
ometric routines will correctly report part overlap
for such matings, leading to the inference that the
matings cannot be realized. Yet the matings are
indeed realizable, via screwing motions and part
deformation, respectively. The planners simply
assume that any such matings will be made suc-
cessfully, and perform no geometric checking for
them. The geometric engine requires that direc-
tions be speci�ed for such matings.

� Recommended subassemblies.

� Which tools are needed to perform certain assem-
bly operations, so that their accessibility can be
checked. Due to lack of space, we cannot describe
that work in the present paper; see [15] for a de-
scription.

The reader may wonder why some of the part-part
contacts must be identi�ed by the user as input to the
system. The answer has to do with �nding the proper
balance between e�ort on the part of the human and
the machine. It is very easy for the human to recog-
nize and specify these contacts, but very di�cult to
develop a feature-recognition algorithm that will do
the same. CAD systems of the future will probably
allow such speci�cation of contact types. Our experi-
ence with data from Pro/ENGINEER, in which such
contact information is not available, is that it takes
hours (not tens of hours) to �nd and specify such con-
tacts. Compare this e�ort with the months that would
be required to program the appropriate feature recog-
nition functions, which would still fail in some cases.

2.3 System Output

The Archimedes 2 system has several forms of out-
put. From the least to the greatest level of detail, they
are:

1. Textual plans, using the three operations above.

2. Animations of plans, showing parts being brought
together without any tooling or �xturing (this is
like an animated exploded diagram). These ani-
mations can also include inversion operations.

3. Animations of workcells performing the assembly,
with robots, tooling, and �xturing.

4. Robot control code su�cient for robotic assembly
of the given device.

Animations and robot code outputs will be described
below. The textual plans include the following pa-
rameters: for mating operations, the target (�xture,
or another part) and the gripper; for inversion opera-
tions, the subassembly to be inverted; for welding, the
position of the weld (we assume laser spot welds).

2.4 System Components

2.4.1 Geometric Engine

The geometric engine is an implementation of the
methods of [14] in C++ using ACIS. It determines
sequences of assembly operations that are geometri-
cally valid, i.e., those in which parts do not collide
with each other.

Contact Finding Before planning begins, all part-
part contacts are found by computing all face-face con-
tacts. Input models include planar, spherical, cylindri-
cal, conical, and toroidal faces, leading to 25 possible

3

face contact types. Of these, we have implemented
only four: plane-plane, plane-cylinder, plane-sphere,
and cylinder-cylinder. In addition, a threaded contact
type is de�ned, which is used to model the contact be-
tween a screw and the threads into which it is turned.
These �ve contact types have been su�cient to cap-
ture virtually all of the contacts found in the examples
described below. The few unsupported types we have
encountered have not a�ected the geometric correct-
ness of the assembly sequences computed.

Each contact type has a specialized routine to de-
termine if a contact of that type exists between two
faces. The facetted representation is frequently used
in these routines.

Trajectory Selection Part matings are used to se-
lect possible mating trajectories. For example, if two
planar faces of distinct parts are in contact, the feasi-
ble in�nitesimal trajectories of each part are restricted
to those such that the scalar product of the trajectory
vector and the outward-pointing contact normal of the
moving part is non-positive. The allowable trajecto-
ries of a part, given the totality of its contacts with
other parts, is the intersection of the sets of trajec-
tories allowed by each contact. This information is
stored in a structure called a non-directional blocking

graph, or NDBG [16], which is used to compute fea-
sible partitionings of the assembly into subassemblies,
and to select trajectories for parts or subassemblies.

Trajectory Checking If a part can move at all, the
distance it can move before colliding with any other
part must be su�cient to remove it completely from
the rest of the assembly. An obvious way to do this
is with volume sweeping computations, such as those
provided by ACIS. When parts have complex geome-
tries, however, such methods are prohibitively slow.
We therefore developed a new method of collision de-
tection, which exploits the hardware capabilities of
a graphics workstation. The method is raster-based,
discretizing the silhouettes of the (facetted represen-
tation of) parts in a plane perpendicular to the di-
rection of motion, but otherwise makes no simplifying
assumptions or approximations.

A brief summary of the available graphics hardware
is required to understand how the method works. The
displayed image has color intensity values stored in
a hardware bu�er, called the image bu�er, for each
pixel. Another hardware bu�er, called the z-bu�er,
stores the distance of each pixel from the viewpoint.
This bu�er is typically used in rendering 3D scenes
in which occluded objects should not be displayed; it

works as follows. Each pixel of the z-bu�er is initial-
ized to the maximum distance. For each object dis-
played, each pixel that will be in its displayed image
is checked for its distance to the viewpoint. If it is
less than the current distance stored in the z-bu�er,
the image bu�er is updated with the intensity value
of the pixel. If it is greater than the current distance,
the object is occluded, and so the image bu�er is not
updated.

The graphics hardware allows the distance compar-
ison to be a greater-than test instead of less-than. This
setting can be modi�ed from the program; it is the key
to the fast checking. To test if part A will collide with
part B when A is translated to in�nity, the z-bu�er
is �rst cleared. The viewpoint is set to be the oppo-
site of the sweep direction, so the sweep is e�ectively
away from the viewpoint. Part A is drawn in black,
then part B is drawn in white, with the greater-than
distance comparison. Any pixels of part B that are
outside the boundary of part A will not be drawn,
since they are not further than the maximumdistance
to which the z-bu�er has been initialized. If any pix-
els of part B are drawn, it is because they are further
than the pixels of part A; since we are viewing along
the sweep direction, this means that part A will collide
with part B at some point along an in�nite transla-
tion. Therefore, we need only check for the existence
of white pixels in the image bu�er. This is easily done
using the programming interface to the graphics sys-
tem. Figure 2 illustrates the technique.

These operations are all performed in hardware.
Translations of any 3D direction, and 3D parts of any
shape can be tested, since the graphics hardware ap-
plies the proper transformations during rendering. We
have observed that the planner runs nearly three or-
ders of magnitude faster when using the hardware-
based method than when using the volume sweeping
method.

Planning with the Geometric Engine The ge-
ometric engine has a very simple planning strategy.
Parts or subassemblies are tested for removability in
turn; if one may be feasibly removed, the planner re-
curses on the remaining subassembly. When all parts
have been removed, the recursion is unwound, result-
ing in a sequence of pairs of parts or subassemblies
and trajectories.

2.4.2 Optimizing Planner

The optimizing planner considers many possible dis-
assembly sequences, and �nds a sequence of lowest
cost according to a given cost function. The planner

4

A

B

Figure 2: A 2D cross-section of the z-bu�er collision
detection test for translating 3D parts. Part A is to be
translated in the direction shown. Bold lines indicate
part silhouettes. Because B's silhouette is above A's
between the dotted lines, a collision will occur.

is based on an algorithm that searches a tree struc-
ture of partial assembly decompositions of the given
assembly. Each path through the tree represents a dif-
ferent partial assembly sequence; at each search step,
the current best partial sequence is decomposed fur-
ther. This process repeats until the decomposition
is complete. The search algorithm used is an imple-
mentation of the A* state-space search algorithm [12],
which is guaranteed to �nd a path of minimum cost
under certain circumstances.

Assumptions The optimizing planner makes the
following assumptions, which are consistent with the
target workcell to which we translate high level plans.

1. Subassemblies may be in one of two orientations,
normal and inverted. One orientation is obtained
from the other by rotating the subassembly 180
degrees. We presume that there is a device in the
workcell that can perform this inversion opera-
tion.

2. All insertion operations are translations in the
downward direction.

3. There are su�cient grippers in the workcell to
manipulate each part; the mapping between parts
and grippers is given to the planner.

4. All joining operations can be performed by a laser
spot welder. Although our workcell does not have
such a welder, it performs assembly as though it
did; welding operations are simulated by replac-
ing unwelded assemblies with welded assemblies.

States A state is a data structure representing: 1)
the parts that have not yet been removed during the
planning process; 2) the current orientation of the sub-
assembly consisting of these unremoved parts; and 3)
the number of gripper changes and subassembly inver-
sions needed to assemble the remaining parts (these
two values are functions of the path to the state, not
the state itself).

Search Strategy Search begins with the complete
assembly. For each part not in a recommended sub-
assembly, and each recommended subassembly, a state
is generated corresponding to the removal of the part
or subassembly. These states are tested for geometric
feasibility, and for visibility of all weld sites to the laser
welder (geometric feasibility testing is implemented by
the geometric engine). If a state fails these tests, it is
inverted, and the tests are reapplied. This is the only
way inversions are introduced into the plan. If the
tests fail again, the state is deleted.

In either case, if the tests succeed, the number of
gripper changes and the number of inversions are up-
dated, by comparing the gripper needed for the re-
moval to the previously used gripper, and comparing
the orientation of the successor state to that of the
given state. If either comparison fails, the respective
count is incremented by one. The cost of the state is
then computed as the sum of these two values, and the
number of remaining parts. This cycle repeats with
the lowest cost state. Search terminates when a state
with no unremoved parts is found, or when there are
no states left to expand. The �rst case corresponds to
success, the second to failure. In case of success, the
list of states is transformed into the corresponding list
of actions.

When the plan for the assembly is complete, a plan
is computed for each recommended subassembly. This
continues recursively until all subassemblies have been
planned, or one is encountered for which a plan cannot
be found. Note that when recommended subassem-
blies are used, the search becomes a hybrid approach,
not a pure A* search. That is, the search is not over as
large a space as would be required to assure optimal-
ity. The tradeo� between computational time and op-
timality seems unavoidable. In practical terms, guid-
ing the planner by suggesting reasonable subassem-
blies seems workable.

2.4.3 Code Generator

The code generator (or translator) produces a se-
quence of function calls in Adept's robot programming
language, V+, that implement the given plan in our

5

workcell. Inputs to the translator are the high level
plan, a �le describing the location of objects (such as
�xtures) in the workcell, and a �le describing grasp
points of the parts.

The translation is straightforward, essentially a
process of replacing high-level operations with calls to
their counterparts in the V+ library, described below.
Parameters of these functions are computed, or read
from �les. This use of skeletal procedures has been
used in LAMA [10] and AUTOPASS [8] (unlike those
systems, we do not simulate the proposed operations
to assess their likelihood of success).

2.4.4 Workcell

The target of the translation process is a workcell con-
sisting of an Adept2 robot, two arm-mounted cameras,
a force sensor, a quick-change wrist, a parallel jaw
gripper with built-in RCC, a vacuum gripper, an in-
verter, a parts kit, and three �xtures. The vision sys-
tem and force sensor controller are both Adept prod-
ucts.

The workcell software library consists of four major
classes of routines. These are: vision and parts recog-
nition, workcell device control, utilities, and \task-
level" functions. All are written in V+. The \task-
level" functions are of greatest interest to our work.
These correspond more or less to the operations found
in the high-level assembly plan, which are pick and
place, invert, and weld. Since our workcell does not
have a welder, the weld operations become no-ops.

Pick and place tasks are implemented by two func-
tions, one for the parallel-jaw gripper and the other
for the vacuum gripper. The �rst has parameters for
the pickup and placement locations and approach and
depart heights. The vacuum gripper pick and place
function has an additional parameter, the grasp o�set
(with respect to the part center). This parameter is
required so that the gripper is not put on a hole.

The function implementing part and subassembly
inversion has parameters for o�sets in x, y, and �.
These are used in presenting the part to the inverter,
so that the gripper does not collide with the inverter.
The part is moved to the position speci�ed by the
o�sets (which are relative to the center of the inverter
jaws), and the inversion cycle is begun.

The software library consists of about 180 kilobytes
of V+ code. About half is used for vision and recog-
nition routines. No checking for success of the opera-
tions is performed.

2.4.5 Illustrator

The simplest graphical output, \
ying parts", has al-
ready been mentioned.

The Archimedes 2 Illustrator is a facility for viewing
animations of assembly sequences carried out by a sim-
ulated robotic workcell. It is based on CimStation , a
software product of SILMA, that is expressly designed
for 3D graphical simulation of manufacturing systems.
CimStation includes extensive tools for describing
workcells, and can import data from Pro/ENGINEER
to obtain part models. It is therefore well-suited for
producing animations of robotic assemblies.

Illustrator control is implemented as a �nite-state
machine, with a state for each operation the workcell
supports. Because it was designed to allow animation
of arbitrary workcells performing arbitrary assemblies,
it requires, as input, an assembly sequence and a work-
cell description. The latter can include

� geometrically and kinematically accurate robot
models,

� models of grippers, �xtures, and ancillary equip-
ment (such as inverters), and

� simulation control

3 System Performance

We have run the planners on a variety of examples;
illustrations of three of the assemblies are shown in �g-
ures 3, 4, and 5. Table 1 summarizes planning times
required by the two planners for various assemblies.
Times were computed by running the planner, under
a graphical user interface, on a Silicon Graphics In-
digo2 200 MHz R4400 computer with Extreme graph-
ics; times marked with an asterisk were run on an
SGI Indigo2 100 MHz R4000 computer with Extreme
graphics, without the graphical user interface. To cal-
culate ACIS data size, the data for each distinct part
is counted only once, regardless of the number of times
that part appears in the assembly. Planning times are
elapsed times necessary to load the pre-facetted data,
identify all contacts in the assembly, and compute the
plan.

The �rst �gure shows a pattern wheel assembly,
a main example handled by the original Archimedes
system [13]. The pattern wheel has 13 parts, as-
sembled unidirectionally, and is fastened together by
laser welds. The pattern wheel was modeled with
detailed welding speci�cations in the design module,
and translated to ACIS format. The optimizing plan-
ner then determined an assembly plan for the pattern

6

Figure 3: The pattern wheel assembly

Figure 4: The discriminator

wheel. Since assembly reorientations and robot grip-
per changes are by far the slowest operations in the
workcell, the optimality criterion given to the planner
minimizes the number of these operations in the plan
(as was discussed in section 2.4.2). The resulting plan
was illustrated in a simulated workcell, and the plan
was automatically translated to V+ code, using the
library described above. The resulting robot program
was executed in the workcell to assemble the pattern
wheel. Laser welds were not performed automatically;
instead, pre-welded subassemblies were substituted in
the workcell when the program speci�ed a laser weld.

To date, the pattern wheel is the only assembly
which has exercised all modules of Archimedes 2.

Interested readers can retrieve color pictures of
the examples, animations of sequences, illustrator
output, and video of the robotic workcell assem-
bling the pattern wheel on the World-Wide Web
(http://www.sandia.gov/2121/archimedes/
archimedes.html).

Figure 5: The Rockwell assembly

N MB GE OP
switchtube 5 0.2 7 sec 8 sec
pattern wheel 13 0.5 14 36
sprytron 14 1.1 17 33
neutron generator 35 1.5 51 |
Rockwell 78 3.2 167 |
fuel pump 36 3.6 175 |
discriminator 42 4.1 77 96*
locker 109 4.5 45* |
seeker 70 6.1 120* |
accelerometer 79 16 167 |
door lock 27 41 16 min* |

Table 1: Planning times for various assemblies. \N"
is the number of parts in the assembly, \MB" is the
megabytes of ACIS data, \GE" is the geometric engine
planning time, and \OP" is the optimizing planner
planning time. An *" indicates timing under di�erent
conditions; see text.

4 Current and Planned Work

The assembly planning problem can be addressed at
many levels of detail. Fully speci�ed assembly plans
must satisfy many constraints and specify many de-
tails, ranging from part accessibility, to stability and
�xturing, to �ne motion plans, to the people or tech-
nology targeted to assemble the product. A more ag-
gressive de�nition would also include factory layout
and scheduling, inventory control, and many other fac-

7

tors. In industry, a detail in any of these areas might
drive a choice of assembly plan [11]. Hence, to be
useful, an assembly planning system must somehow
enable generation of the \right" plan according to all
these constraints.

However, most of these are active areas of research
in themselves. Even if techniques existed to evaluate
them, constructing a system that integrated all the
constraints on assembly plans would be a huge e�ort,
and it is not at all clear how it should be structured.

We are currently working on encoding and using
constraints expressing tool accessibility, workcell ca-
pabilities, and grasping. A large catalog of relevant
constraints can be found in [5].

Making the planner more interactive is also a ma-
jor goal. Users could specify constraints to honor,
part groupings, and subassemblies more easily in an
interactive system than is currently possible. \Ob-
viously" fruitless areas of the search space could be
eliminated by the user. We have already implemented
a graphical user interface under which all the facilities
of Archimedes 2 are available. We plan to use this in-
terface as the mechanism of interaction with the user.

5 Conclusion

We have described Archimedes 2 and its capabili-
ties, as determined by experimentation on models of
real mechanical assemblies. Based on its performance,
we believe that it represents the state of the art in
implemented assembly planning systems, at least in
terms of the complexity of assemblies for which plans
have been successfully computed. Two aspects of
the system, in particular, have allowed us to achieve
these results: the fast collision detection algorithm;
and the declaration of part matings that are threaded
or require part deformation, in place of sophisticated
feature-recognition software. This latter point sug-
gests that human input to the assembly planning pro-
cess is critical, and that future research should ad-
dress �nding the proper balance between human and
machine e�ort.

References

[1] A. Bourjault. Contribution �a une approche m�etho-

dologique de l'assemblage automatis�e: �elaboration au-

tomatique des s�equences op�eratoires. PhD thesis, Fac-
ult�e des Sciences et des Techniques de l'Universit�e de
Franche-Comt�e, 1984.

[2] L. S. Homem de Mello and S. Lee, editors. Computer-

Aided Mechanical Assembly Planning. Kluwer Aca-
demic Publishers, 1991.

[3] L. S. Homem de Mello and A. C. Sanderson. A correct
and complete algorithm for the generation of mechan-
ical assembly sequences. IEEE Trans. on Robotics and

Automation, 7(2):228{240, 1991.

[4] ISO. ISO 10303: Product Data Representation and

Exchange, 1994.

[5] R. E. Jones and R. H. Wilson. A survey of constraints
in automated assembly planning. In Proc. of the 1996

IEEE Int. Conf. on Robotics and Automation, 1996.

[6] S. G. Kaufman, R. H. Wilson, R. E. Jones, T. L. Cal-
ton, and A. L. Ames. LDRD �nal report: Automated
planning and programming of assembly of fully 3D
mechanisms. Technical report, Sandia National Lab-
oratories, 1995. In review.

[7] H. Ko and K. Lee. Automatic assembling procedure
generation from mating conditions. Computer Aided

Design, 19(1):3{10, 1987.

[8] L. I. Lieberman and M. A. Wesley. AUTOPASS:
An automatic programming system for computer con-
trolled mechanical assembly. IBM J. of Research and

Development, 21(4):321{333, 1977.

[9] T.-H. Liu and
G. W. Fischer. Developing feature-based manufac-
turing applications using PDES/STEP. Concurrent

Engineering: Research and Applications, 1(1):39{50,
1993.

[10] T. Lozano-P�erez and P. H. Winston. LAMA: A lan-
guage for automatic mechanical assembly. In Proc. of

the Intl. Joint Conf. on Arti�cial Intelligence, 1977.

[11] J. L. Nevins, D. E. Whitney, T. L. De Fazio, A. C.
Edsall, R. E. Gustavson, R. W. Metzinger, and W. A.
Dvorak. Concurrent Design of Products and Pro-

cesses. McGraw-Hill, 1989.

[12] N. J. Nilsson. Principles of Arti�cial Intelligence.
Tioga Publishing, 1980.

[13] D. R. Strip and A. A. Maciejewski. Archimedes: An
experiment in automating mechanical assembly. In
Proc. of the 11th ASME Intl. Conf. on Assembly Au-

tomation, 1990.

[14] R. H.Wilson. On Geometric Assembly Planning. PhD
thesis, Stanford Univ., March 1992. Stanford Techni-
cal Report STAN-CS-92-1416.

[15] R. H. Wilson. A framework for geometric reasoning
about tools in assembly. In Proc. of the 1996 IEEE

Int. Conf. on Robotics and Automation, 1996.

[16] R. H. Wilson and J.-C. Latombe. Geometric reason-
ing about mechanical assembly. Arti�cial Intelligence,
71(2):371{396, 1994.

8

